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Systematic toxicity testing, using conventional toxicology methodologies, of single chemicals and
chemical mixtures is highly impractical because of the immense numbers of chemicals and
chemical mixtures involved and the limited scientific resources. Therefore, the development of
unconventional, efficient, and predictive toxicology methods is imperative. Using carcinogenicity
as an end point, we present approaches for developing predictive tools for toxicologic evaluation
of chemicals and chemical mixtures relevant to environmental contamination. Central to the
approaches presented is the integration of physiologically based pharmacokinetic/
pharmacodynamic (PBPK/PD) and quantitative structure—activity relationship (QSAR) modeling with
focused mechanistically based experimental toxicology. In this development, molecular and
cellular biomarkers critical to the carcinogenesis process are evaluated quantitatively between
different chemicals and/or chemical mixtures. Examples presented include the integration of
PBPK/PD and QSAR modeling with a time-course medium-term liver foci assay, molecular
biology and cell proliferation studies, Fourier transform infrared spectroscopic analyses of DNA
changes, and cancer modeling to assess and attempt to predict the carcinogenicity of the series
of 12 chlorobenzene isomers. Also presented is an ongoing effort to develop and apply a similar
approach to chemical mixtures using in vitro cell culture (Syrian hamster embryo cell
transformation assay and human keratinocytes) methodologies and in vivo studies. The promise
and pitfalls of these developments are elaborated. When successfully applied, these approaches
may greatly reduce animal usage, personnel, resources, and time required to evaluate the
carcinogenicity of chemicals and chemical mixtures. — Environ Health Perspect 106(Suppl 6):
1385-1393 (1998).  http.//ehpnet1.niehs.nih.gov/docs/1998/Suppl-6/1385-1393yang/abstract.html
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This paper is a presentation of the ongoing  our laboratories, with collaboration from

development of concepts and approaches
toward predictive and alternative toxicology,
particularly for chemical mixtures, from

U.S. and European scientific colleagues.
As a starting point, one asks why such a
development is necessary. To answer this

question adequately, certain reality checks
must be emphasized:

There Is No Such Thing

as a Single Chemical Exposure

This issue has been discussed in detail else-
where (1-3). Briefly, a single chemical
often ends up with many metabolites in
the body. Furthermore, considering the
multiple chemicals to which we are com-
monly exposed in foods, drinks, medicines,
cosmetics, and indoor and outdoor pollu-
tants and the fact that even our own body
is a chemical mixture, there is really no
such thing as a single chemical exposure in
anyone’s life.

Conventional Toxicology Studies
Cannot Keep Pace with Single
Chemicals, Let Alone Chemical
Mixtures

The National Cancer Institute’s Carcino-
genesis Bioassay Program was established
in 1962 (4). This bioassay program was
later transferred to the U.S. National
Toxicology Program upon its establish-
ment in 1978. In the bioassay program’s
combined 36 years of operation, approxi-
mately 500 chemicals have been studied
for carcinogenicity and other chronic toxi-
cities (5). These studies and the related
range-finding and dose-setting studies are
extremely expensive, they require large
numbers of animals, and the study dura-
tion is long (6). Even though these studies
are the gold standards, considering the
approximately 70,000 to 600,000 chemi-
cals in commerce (7-9), the number of
chemicals for which we currently have ade-
quate toxicology information for risk assess-
ment is minuscule. At the present mode
and rate of study of these chemicals, it is
doubtful that our society will ever have a
thorough toxicologic evaluation on the
majority of the chemicals that are used now
or may be used in the future. Further con-
sideration of the issue of health effects of

This paper is based on a presentation at the Conference on Current Issues on Chemical Mixtures held 11-13 August 1997 in Fort Collins, Colorado. Manuscript received
at EHP 5 June 1998; accepted 8 September 1998.

The research work and related concept development on chemical mixtures were supported in part by a Superfund Basic Research Program Project grant (P42
ES05949) from the National Institute of Environmental Health Sciences, a grant (F49620-94-1-0304) from the Air Force Office of Scientific Research, and a cooperative
agreement (U61/ATU881475) from the Agency for Toxic Substances and Disease Registry. Without such generous support for biomedical research this work could
never have been possible.

Address correspondence to R.S.H. Yang, Center for Environmental Toxicology and Technology, Colorado State University, Foothills Campus, Fort Collins, CO 80523-
1680. Telephone: (970) 491-5652. Fax: (970) 491-8304. E-mail: ryang@cvmbs.colostate.edu

Abbreviations used: BBDR, biologically based dose response; DEN, diethylnitrosamine; GSH, reduced glortathaione; GSSG, oxidized gultathione: GST-P, glutathione S
transferase, placental form; LED, lower 95% confidence limit on an effective dose associated with a 5 or 10% extra risk, noted by subscript of 5 or 10, respectively;
MLR, multiple linear regression; PBPK/PD, physiologically based pharmacokinetics/pharmacodynamics; PK, PBPK model parameters; PLS, partial least square; QSAR,
quantitative structure—-activity relationship; SHE, Syrian hamster embryo; TGF, transforming growth factor; TR, toxicologic response.

Environmental Health Perspectives = Vol 106, Supplement 6 = December 1998 1385



chemical mixture exposures (i.e., real-world
issues), it is impossible to deal with the
problems of combination toxicology of
chemical mixtures by adopting the approach
of systematic conventional toxicology and
carcinogenicity testing (1,10).

Predictive and Alternative Toxicology
Must Be Developed

During our approximately 15 years of
active research in the toxicology of chemical
mixtures, we have become resigned to the
fact that the conventional animal toxicology
testing methods will not work for chemical
mixtures, particularly in the evaluation of
carcinogenicity (2,3,6). We believe that to
deal with chemical mixture issues effectively
we must fully utilize and integrate compu-
tational technology, mathematical and sta-
tistical modeling, mechanistically based
short-term toxicology studies, and cellular
and molecular biology methodologies.
Furthermore, an efficient experimental
approach or system for chemical mixtures
must at least meet the following critical
requirements: It must be relatively simple,
short-term, and inexpensive; be based on
the best science; incorporate mechanisms of
toxicity; have broad applicability; and have
predictive capability.

The Increasing Application
of Computer Te‘:l‘:nolo

in Toxicology Is Inevitable

Widespread application of computers in
risk assessment, particularly the use of
linearized multistage and other models for
cancer risk assessment, has been a reality for
more than two decades. Since the late
1980s, the advancement of physiologically
based pharmacokinetic (PBPK) modeling
and the integration of PBPK/pharmaco-
dynamic (PD) modeling into the risk
assessment process further enhanced the
utilization of computer technology. Thus,
computer application in toxicology is
already a fact. Looking into the future, it
becomes obvious that some type of predic-
tive approach must be developed to handle
the huge number of single chemicals in
commerce and the nearly infinite number
of chemical mixtures in the environment. It
is inevitable that computer technology will
be heavily involved in any development of
predictive toxicology.

Prediction of health effects usually
involves some type of mathematical mod-
eling, which may range from the classical
compartmental pharmacokinetic model-
ing to the currently advancing PBPK/PD,
biologically based dose response (BBDR),
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and/or quantitative structure—activity
relationship (QSAR) modeling. Some suc-
cesses, including those from our studies,
in prediction of pharmacokinetic fate and
toxicity of simple chemical mixtures are
already evident in the literature (17/-22).
The toxicologic end points of prediction,
for instance, include an interaction
threshold (18,19) and acute lethality due
to hepatic injuries (20).

For more complex mixtures the
integration of PBPK/PD, BBDR, QSAR
modeling, and lumping analysis (a model-
ing tool developed in the petroleum indus-
try) may allow the development of a
predictive tool for the health effects (23).
In the 1960s the application of lumping
analysis rendered it possible to predict gaso-
line production based on a few lumps (i.e.,
similar groups of chemicals based on car-
bon numbers or boiling points) rather than
the thousands of component chemicals of
the petroleum (24,25). Thus, even though
relatively little is known about the complex
mixture of petroleum, a predictive tool was
developed and applied from modeling. If a
relatively crude lumping analysis was able
to predict some aspects of catalytic cracking
of petroleum 30 years ago, why can’t we
attempt to predict health effects from
chemical mixtures through a much more
sophisticated modeling technique such as
structure-oriented lumping (26,27)?
Accordingly, our laboratory, in conjunction
with scientists from other institutions, is
actively pursuing this area of research (28).

Long-Term, Low-Level Exposures Are
Below the Sensitivity of Present-Day
Methods of Experimental Toxicology

Conventional toxicology methods are
mainly observational and descriptive. As an
example, in carcinogenesis the animals,
usually rodents, are dosed with the chemi-
cal of interest for 2 years, the surviving ani-
mals are sacrificed, and the tissues are
examined histopathologically for the pres-
ence of tumors. Because the number of
animals per group is limited, usually fairly
high dose levels must be used to elicit
tumorigenic responses. In cancer risk
assessment these high-dose experimental
results are extrapolated to the very low dose
(i.e., environmentally realistic) regions
where such conventional experimental pro-
tocols would not be able to detect any car-
cinogenic responses. Even with the newly
proposed point of departure approach for
cancer risk assessment (29), the lower 95%
confidence limit on a dose associated with
5 or 10% extra risk (LEDgs or LEDy,,

respectively) region is still not easily attainable
with conventional protocols. Moreover,
these dose levels (i.e., effective dose, EDg;s
or EDyy) are still orders of magnitude
higher than the estimated environmental
exposure levels.

Recent advances in molecular biology
techniques offer unique opportunities for
the development of more efficient and sen-
sitive methods for toxicology. For instance,
techniques such as polymerase chain reac-
tion or reverse transcriptase polymerase
chain reaction, coupled with mechanistic
studies of the cancer process in cell culture
systems, may detect early or late genotypic
changes related to carcinogenesis at dose
levels much below the limits of detection
of more conventional toxicology methods.
As we propose here, the integration of this
type of mechanistic data with PBPK/PD,
BBDR, and/or QSAR modeling may for-
mulate an efficient and predictive approach
for carcinogenic potentials of chemicals
and chemical mixtures.

Because this is a review paper, many
experimental details are not provided.
Readers are referred to the papers cited for
additional information. The following
discussion will follow the chronological
order of development of these approaches
in our laboratories.

Experimental Approaches

This portion of the paper follows the
evolution of our thinking in the last few
years on how to develop predictive
approaches for single chemicals and chemi-
cal mixtures. To focus our presentation we
chose to limit the discussion to carcinogen-
esis only. Initially, we concentrated our
effort on a medium-term (i.e., 8 weeks) in
vivo experimental approach and its integra-
tion with PBPK/PD modeling. Although
we made progress on this front and
obtained interesting findings, it was soon
obvious that even this shorter term, more
efficient in vivo system was too resource
intensive to be routinely used for chemical
mixture work. Therefore, still more effi-
cient systems must be developed. We
investigated in vitro systems with our spe-
cific criteria (i.e., relatively simple, short-
term, and inexpensive; based on the best
science; understanding mechanisms of tox-
icity; broad applicability; and predictive
capability) in mind. We found that cell
culture systems offer unique opportunities,
particularly in mechanistic and time-course
studies related to carcinogenesis. Thus, as a
further development, in vitro mechanistic
studies using cell culture systems and their

Environmental Health Perspectives = Vol 106, Supplement 6 » December 1998



DEVELOPING ALTERNATIVE AND PREDICTIVE TOXICOLOGY

integration with pharmacodynamic
modeling became a major emphasis in our
laboratories. Our present thinking is that
cell culture systems and in vivo animal
studies may work in concert to bring about
much-needed mechanistic and pharmaco-
kinetic information for PBPK/PD model-
ing. When quantitative information on the
selected molecular and cellular end points
is available on chemicals with structural
correlation, QSAR modeling may then be
applied to assess their relationship with car-
cinogenic potentials. In doing so, the posi-
tive QSAR relationship between certain
end points of a series of chemicals with
their respective carcinogenic potentials may
be used to develop a predictive approach
for other untested chemicals with
structural similarities.

The Medium-Term Liver Foci Bioassay

To simplify the detection of carcinogenicity
of chemicals and chemical mixtures, Ito
and colleagues developed the medium-term
liver foci bioassay (30,31). The details of
experimental protocol of this bioassay may
be found in Ito et al. (30,31); the bioassay
is discussed briefly below.

The medium-term liver foci bioassay
(30,31) utilizes the placental form of glu-
tathione S-transferase (GST-P) as a marker
for rat hepatic preneoplastic and neoplastic
lesions (32,33). The medium-term hepato-
carcinogenesis bioassay of Ito et al. (30,31),
an 8-week experiment, utilizes F344 rats
that are given a single dose of diethylni-
trosamine (DEN) to initiate carcinogenesis.
After a 2-week period the rats are given
repeated exposure to a test compound for a
dosing period of 6 weeks. At the end of
week 3, rats are subjected to partial hepatec-
tomy to maximize opportunities of promo-
tion via a high rate of cell proliferation. All
rats are sacrificed at the end of week 8 for
evaluation of development of preneoplastic
hepatocellular nodules by staining for
expression of GST-P (30,31). Extensive
testing has demonstrated that the induction
of GST-P-positive foci in the medium-term
bioassay for liver carcinogens correlates well
with the incidence of hepatocellular carci-
nomas in parallel long-term assays (30,31).
Two hundred seventy-seven chemicals have
been tested in Ito et al.’s (34) medium-
term liver foci bioassay; it has correctly
identified 97% of genotoxic hepatocarcino-
gens and 84% of nongenotoxic hepatocar-
cinogens (34). Thus, for rapid screening of
large numbers of chemicals and for reduc-
tion in the required number of animals, this
assay is of great advantage.
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A Modified Time-Course
Medium-Term Liver Foci Bioassay

In the original protocol of Ito et al.’s
(30,31) medium-term liver foci bioassay,
the animals undergo terminal sacrifice at
the end of the 8-week experimental period
and the data are for only one time point.
To obtain sufficient data for constructing a
viable PBPK/PD model (“Integration of In
Vive Studies and PBPK/PD Modeling”),
time-course events must be studied.
Therefore, we modified the original Ito et
al. (30,31) protocol into time-course
studies based on anticipated cell prolifera-
tion rates during this 8-week experimental
period (Figure 1). Wich this modified pro-
tocol we obtained pharmacokinetic data,
cell proliferation rates, selected molecular
and biochemical information (i.e., c-jun, c-
fos, CYP1A2, reduced glutathione (GSH):
oxidized glutahione (GSSG) ratios, por-
phyrin levels) as well as morphometric data
on foci at different stages of the foci devel-
opment following treatment of several
individual chlorobenzene isomers. Detailed
descriptions of methodologies involved in
the measurement of these parameters are
discussed in Thomas et al. (35,36) and
Thomas (37).

Integration of in Vivo Studies
and PBPK/PD Modeling

The PBPK/PD modeling of Ito et al.’s
(30,31) medium-term liver foci bioassay
presented some unique challenges. Whereas
the foundation of this modeling approach
was laid by using pentachlorobenzene (37)
as a model system, the principle is applica-
ble for other chemicals or chemical mix-
tures. The evolution of the approach for a

Cell proliferation rate
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Figure 1. Experimental protocol for the modified time-
course of Ito’s medium-term liver foci assay (30,37).
Abbreviations: PH, partial hepatectomy; LI, labeling
index. Each arrow under the time axis depicts the fol-
lowing experimental procedures: 1) sacrifice five
rats/group/time point following a 3- to 5-day bromod-
exyuridine exposure; 2) liver tissue for LI measurement;
3) liver tissue for molecular biology studies; 4) tissues
for chemical analyses; 5) liver tissue for oxidative
stress studies; and 6) histopathology and morphometric
analyses on liver.

PBPK/PD model for tumorigenesis in our
laboratories followed roughly three stages.
The first stage was the most ambitious
stage, in which we formulated a model as
shown in Figure 2. Because cell-cycle
kinetics was incorporated into this model,
our initial effort was devoted to a biologi-
cally based mathematical model of the
effects of partial hepatectomy on cell cycle
kinetics (38) and a comparison of quanti-
tative immunohistochemical markers for
cell-cycle specific changes in F344 rats
(39). However, it was soon apparent that
there were two pitfalls. First, whereas the
proliferating cell nuclear antigen staining
appeared to work well for the liver cells
undergoing rapid proliferation such as after
two-thirds partial hepatectomy (39), quan-
titative morphometric analysis would be
prohibitively resource-intensive for liver at
resting state, which has a low rate of cell
turnover. Second, although a biologically
motivated model depicting cell-cycle kinetics

ﬁ@\

. kdie1
Normal liver | —— o
\E/ krepionay| kinjipna)
4
kdie2
Injured cells [———>
kinit
kdie3
Initiated cells ——>
E\ Lkprolif
ﬁ' . kdie4
Foci

Figure 2. Diagram of a pharmacodynamic model for
the liver foci development for selected chlorobenzene
isomers. Biologic processes governing cell replication
and preneoplastic lesion have been expressed in terms
of fundamental cell cycle kinetics within the frame-
work of a multistage model for cancer events. The cel-
lular stages are labeled Gy, S, G2, and M. Krepipna.
kinjpna). kinit, kprolif are rate constants for DNA
repair, DNA injury, cell initiation, and cell proliferation,
respectively. Kdie 1 through 4 are rate constants for
cell death for the respective compartments.
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was constructed and computer simula-
tions were consistent with available litera-
ture data (38), the data requirements for
applying such a model to the specific
chemicals and bioassay systems that we
were studying were beyond the reach of
our available resources and personnel.
Thus, we were overly ambitious in our
initial modeling attempt.

In the next stage we simplified the
model greatly. As shown in Figure 3, this
model depicts (from the top to the
bottom) that the normal cells have a
growth function (Py) that is related to the
total number of cells, their proliferation
rate, and time. These cells may die at a
death rate (kdiel) or may be injured (DNA
damage) by chemicals at the rate of kinj.
The cellular repair processes may fix the
damage at the rate of krep. The injured cell
may go on to become initiated cells (foci)
at the rate of kinit or go on to die at the
death rate of kdie2. The initiated cells have
their growth function (P}) and death rate
(kdie3) as well. This model (Figure 3) was
a prototype and we kept it as simple as pos-
sible. Using this model, we attempted to
simulate the data published by Tatematsu
et al. (40) on time-course studies of liver
foci development and the liver growth fol-
lowing DEN initiation, phenobarbital pro-
motion, and partial hepatectomy. The
results are shown in Figures 4 and 5. The
model simulations in Figures 4 and 5 (solid

PBPK model
P Normal liver kdie1
N
l krep(DNA)lkinj(DNA)
Initiated cell _kd'L>
kinit
P Initiated cells | kdie3
: (foci)

Figin'e 3. A simplified PBPK/PD model for preneoplastic
foci development in the rat liver. See text and Figure 2
for explanation of various functions and rate constants.
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lines) are consistent with the experimental
data on both the foci development and the
liver growth. Although not shown here, the
DEN/control (vehicle instead of phenobar-
bital) showed similar consistent results
between computer simulation and experi-
mental data from Tatematsu et al. (£0).
Our subsequent modeling effort (stage
3) was directed toward the linking of a
PBPK model with the first two cellular
states of the two-stage cancer model (the
Moolgavkar-Venzon-Knudson model). Part
one of the modeling effort involved the
PBPK simulation of single- and multiple-
gavage dose exposures (37)—a reflection of
the experimental procedures. Part two took
into consideration the physiologic changes
resulting from two-thirds partial hepatec-
tomy (37)—a drastic physiologic state. Part
three included linking a deterministic model
with a stochastic model and the pharmaco-
dynamic processes involved in the forma-
tion of foci (37), the initiated cells in the
two-stage carcinogenesis model. To date, all
these modeling activities were based on
using pentachlorobenzene as a model chem-
ical in the modified time-course medium-
term liver foci bioassay system. However,
the principles derived from this effort may
easily be applicable to chemical mixtures.
Our present and future modeling
direction aims at going beyond the initiated
cell stage—i.e., to look at the processes
involved in the later events of the multistage
carcinogenesis process. Relevant discussion
follows in “The Integration of Mechanistic
Information from in Vitro and in Vive
Studies and Pharmacodynamic Modeling,”
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Figure 4. PBPK/PD model simulation of total liver cell
volume under the experimental conditions of Ito’s liver
foci assay using DEN as an initiator and phenobarbital
as a promoter. PH was performed on week 3; however,
it is shown here at about 168 hr because the simula-
tion (solid line) started at 1 week before PH when phe-
nobarbital treatment began. Data from Tatematsu et
al. (40).

Studies of Mechanisms of
Carcinogenesis Using Cell Cultures
following Treatment of Chemicals
and/or Chemical Mixtures

Cell culture systems, because of their
simplicity and low cost, make it possible to
determine the oncogenic potential and
mechanisms of transformation of a variety
of chemicals and chemical mixtures at the
cellular level. Syrian hamster embyro (SHE)
cells have the advantage that the carcino-
genic potential of many chemicals has been
evaluated using morphologic transforma-
tion as an index. This has largely been
through the effort of scientists at The
Procter & Gamble Company (41,42).
Epidermal keratinocytes are one of the
most well-characterized cell culture systems
for studying transformation.

For both SHE cells and human
keratinocyrtes, cytotoxicity and altered cellu-
lar growth characteristics and induced
malignant transformation (i.e., tumori-
genicity) are end points for the evaluation
of chemical mixtures of interest. In addi-
tion, in keratinocytes these studies may be
extended to link observed phenotypic
changes with alterations in expression of
defined cell cycle regulators and growth fac-
tors. These biologic experiments should be
carried out in an iterative manner with the
development of a biologically based model.
The concept of model-directed experimen-
tation should be followed to save resources
by avoiding unnecessary experimentation.

The overall idea of studying the carcin-
ogenesis process using human keratinocytes
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Figure 5. PBPK/PD model simulation of the develop-
ment of liver foci (foci area) under the experimental
conditions of Ito’s liver foci assay using DEN as an ini-
tiator and phenobarbital as a promoter. PH was per-
formed on week 3; however, it is shown here at about
168 hr because the simulation (solid line) started at 1
week before PH when phenobarbital treatment began.
Data from Tatematsu et al. (40).
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Figure 6. A schematic review of the literature showing phenotypic and genotypic alterations in human
keratinocytes during the multistage process of carcinogenesis. GF, growth factor.

is summarized in Figure 6. There are many
phenotypic and genotypic changes accom-
panying the transformation of human
keratinocytes; some are early events and
others are late events. To cover these
changes, commercially available primary
human keratinocytes may be used to study
the early events (43). A number of immor-
tal keratinocyte cell lines such as HaCat
(44), RHEK-1 (45), and NM-1 (46) can
be used to study the later events. Selected
pertinent biomarkers such as transforming
growth factor (TGF)-a, TGF-B, c-myc,
c-ras, and p53 may be studied and quanti-
tative information obtained. Such quanti-
tative information may be utilized to
calibrate and verify BBDR models.

Integration of Mechanistic
Information from in Vitro

and in Vivo Studies and
Pharmacodynamic Modeling

We summarize our approach on the integra-
tion of mechanistic information and model-
ing for the assessment of carcinogenic
potential for chemicals in the algorithm in
Figure 7.

We believe that because cancer is a
cellular process, the carcinogenic potential
of chemicals can be identified through the
studies of selected key molecular/cellular
markers of the cancer processes; also,
QSAR and pharmacodynamic modeling of
these key biomarkers for cellular process
can be effectively utilized to develop a
predictive tool for evaluating carcinogenic
potential within certain classes of chemicals.

We listed multiple chemicals for chemi-
cal mixtures, but this general approach
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(Figure 7) is applicable for single chemicals
as well. The short-term alternative assays
may be represented by the SHE cell trans-
formation assay and the modified time-
course medium-term liver foci assay
(Figure 1); other such tests are available.
The molecular or cellular biomarkers from
a number of processes leading toward
cancer (including loss of growth control,
failure to commit apoptosis, loss of DNA
repair) may be specifically targeted by a
compound or a class of compounds. From
time-course studies, critical rate constants
(e.g., cellular birth, death, and mutation
rates for primary and immortal cells, rates
of changes of growth factors, and/or
expression of oncogene and tumor-sup-
pressor genes) may be generated for con-
structing the cancer model(s). Quantitative
data on the selected molecular/cellular bio-
markers for the cancer process may be used
in QSAR modeling for a class of chemicals
or chemicals with structural similarities.
Such integration of QSAR, PBPK model-
ing, and cancer modeling (i.e., PBPD
modeling) will then provide us with a tool
for developing predictive toxicology and
risk assessment.

ﬁmuon of PBPK/PD and QSAR
M for the Development
of Predlctlve Capability

For the last few years, we have devoted a
great deal of effort toward developing a
predictive toxicology approach using the
homolog series of 12 chlorobenzenes. We
will use chlorobenzenes as a case study;
the same general principles should be
applicable to other classes of chemicals.

The chlorobenzenes are a small group
of congeneric chemicals. There are 12
congeners in total—from mono- to hexa-
chlorobenzene. Most of these are solid at
ambient temperature and pressure, except
for mono- and some dichlorobenzenes.
Their water solubility is generally low to
extremely low, and their hydrophobicity
ranges from intermediate to fairly high.
The log octanol/water partition coeffi-
cient for monochlorobenzene is 2.89,
whereas for hexachlorobenzene it is 5.73
(47). In a QSAR model, a correlation is
developed between one or more quantita-
tive structural, physicochemical, and/or
biologic descriptors and a toxicologic end
point (48). The toxicologic end point can
either be quantitative (e.g., an effect level
such as the median lethal concentration)
or qualitative (e.g., mutagenic or nonmu-
tagenic). Hansch et al. (49) provide an
interesting overview of the use of QSAR
in toxicology.

Our plan is to build and verify QSAR
models based on our ongoing studies of
molecular and cellular biomarkers of pre-
neoplastic foci formation from exposures
to hexa-, penta-, 1,2,4,5-tetra-, and 1,4-
dichlorobenzenes; to use these verified
QSAR models to predict each of the toxi-
cologic responses and PBPK modeling
parameters studied to date for the remain-
ing eight chlorobenzene isomers (1,2,3,4-
tetra-, 1,2,3,5-tetra-, 1,2,3,-tri-, 1,2,4,-tri-,
1,3,5-tri-, 1,2-di-, 1,3-di-, and mono-
chlorobenzenes); and to verify the QSAR
model predictions by conducting molecu-
lar biology/biochemical experiments and
PBPK/PD modeling studies on selected
chlorobenzene isomers using iz vitro and
in vivo methods. To achieve that we will
proceed as follows:

The array of toxicologic data on the
first four selected chlorobenzenes will be
studied using pattern recognition methods
(50,51) to determine which data correlate
with the carcinogenic nature of the com-
pounds. The methods that will be used are
principal component analysis, linear dis-
criminant analysis, cluster analysis, and
soft independent modeling of class analogy
(50,51). All of these methods can be used
to study which biologic descriptors (or
combination of descriptors) are correlated
with or even responsible for the carcino-
genic nature of the active chlorobenzenes.
In the next step the toxicologic end points
that are perceived important for the
understanding of the carcinogenicity of
these compounds will be studied with
quantitative methods.
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Figure 7. An algorithm for our approach to predictive and alternative toxicology for assessing carcinogenic

potentials of chemicals or chemical mixtures.

QSAR correlation and prediction of
toxicologic responses on a number of molec-
ular or cellular biomarkers for carcinogenic
potentials of the 12 isomers of chloroben-
zenes will be carried out in line with the
classical Hansch multiple linear regression
(MLR) analysis approach (52-54). The
correlation developed will be similar to the
following description, with the understand-
ing that actual relationships will be calcu-
lated using partial least square (PLS)
regression analysis (a projection multivariate
technique) rather than MLR.

log%=aa+bﬁ+cy+d0‘+...
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This equation, in a general sense, expresses
that the toxicologic response (7R) mea-
sured is a function of a number of factors
(aqt, b, cy, d6, ...). Here, 2, b, ¢, d, ... are
QSAR model coefficients that may be
derived after the model verification from
data obtained with the four isomers (i.e.,
hexa-, penta-, 1,2,4,5-tetra- and 1,4-
dichlorobenzenes) that we are currently
studying, whereas &, B, 7, 8, ... are the spe-
cific numeric derivations of physicochemi-
cal parameters retrieved from literature
and/or comprehensive databases. Examples
of o, B, %, 0, ... are log K, (hydrophobic-
ity), melting point, vapor pressure, or
Swain—Scott parameters. The latter are elec-
tronic parameters generated by theoretical
chemical methods—quantum chemical cal-
culations and several reactivity/interaction

indices derived thereof. These methods
include the highest occupied molecular
orbital and the lowest unoccupied molecu-
lar orbital energies and densities, polariz-
abilities, (super) delocalizabilities (55-57),
or transition-state-based reactivities
(58,59), and connectivity or other graph-
theoretical indices (60—-64) that will be
calculated with the appropriate programs.

To date, the TRs measured in our
ongoing project on hexa-, penta-, 1,2,4,5-
tetra- and 1,4-dichlorobenzenes include
GST-P-positive foci (numbers and area);
alteration of c-jun and c-fos expression
(thus AP-1 related gene expression of
GST-P); changes in CYP1A2 expression
(thus Ah-receptor related activity); liver
porphyrin levels (possible involvement of
oxidative stress); alterations in the
GSH:GSSG ratio; and induction of DNA
damage (via Fourier transform infrared
analyses). Furthermore, time-course
changes were also obtained for liver cell
proliferation rates under the influence of
DEN, chlorobenzene treatment, and par-
tial hepatectomy in the modified time-
course medium-term liver foci bioassay
(Figure 1). All these TRs are either quanti-
tative or semiquantitative parameters;
thus, they are amenable to QSAR analysis.
Of course, judgment on the potency and
importance of these TRs must be made
with respect to the toxicologic end point,
in this case the foci formation.

For QSAR correlation and prediction of
PBPK modeling parameters on the 12 iso-
mers of chlorobenzenes, we also intended to
apply the following general QSAR model
for all relevant PBPK parameters:

log#=aa+b/3+cy+ab'+...

where PK represents PBPK model parame-
ters measured or estimated.

The PKs measured or estimated to
date in our ongoing project on hexa-,
penta-, 1,2,4,5-tetra- and 1,4-dichloro-
benzenes include tissue partition coeffi-
cients for liver, fat, muscle (representing
a slowly perfused tissue group), and
kidney (representing a rapidly perfused
tissue group) and iz vive metabolic rate
constants (i.e., K, and V,,,,). The priority
of selecting PKs for QSAR modeling will
be based on sensitivity analyses in PBPK
modeling as to their respective influences
on computer simulations; the greater the
influence, the higher the priority.
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The work of de Jongh and co-workers
(65) showed that for a large set of diverse
chemicals, in both rats and humans, the tis-
sue:blood partition coefficients could be
described by a general function of the
compound’s log K, of the following form:

I)t,b - fw,t +.fl,r X(Kow)b +C
fw,b +,fl./7 ><(I(otu)

where P, ; is the tissue to blood partition
coefficient, f,,, is the fraction of water in
the tissue, £}, is the fraction of lipid in the
tissue, £, 5 is the fraction of water in the
blood, £}, is the fraction of lipid in the
blood, 2 and & are exponents, and Cis an
adjustment factor to provide for the effect
of protein binding. This methodology will
be used for QSAR modeling of tissue parti-
tion coefficients. For metabolic rate con-
stants, the Hansch-like approach using PLS
as described earlier.

Conclusion

In this paper we described the approaches
for the possible development of a predic-
tive tool for the carcinogenic potential of
chemicals and chemical mixtures. For
illustrative purposes we used single chemi-
cals (i.e., chlorobenzenes) to develop the
concept and approach for predicting
carcinogenic potentials of different isomers of
chlorobenzenes. Toxicologic interactions may
be at the levels of pharmacokinetics and/or
pharmacodynamics. Those toxicologic

interactions that are relevant to the end
point (in this case carcinogenicity) may be
linked for different chemicals in a chemi-
cal mixture via PBPK/PD modeling.
QSAR modeling may be used to extrapo-
late to other chemicals that are struc-
turally similar to the components of a
chemical mixture under study. In this
integrated manner we may develop pre-
dictive capabilities for the toxicology of
chemical mixtures.

How do we approach the issue of risk
assessment once such modeling and the
generation of quantitative information are
realized? The linchpin of a realistic risk
assessment is an accurate estimate of target
tissue dosimetry from which a virtually
safe or safe exposure dose may be calcu-
lated. PBPK/PD or BBDR models are
powerful tools to define such target tissue
dosimetry. For chemical mixtures, three
scenarios can be considered. In the first
case where a simple chemical mixture with
known mechanism(s) of toxicologic inter-
action, PBPK/PD or BBDR modeling of
the toxicologic interaction can provide
estimates on an interaction threshold,
which may in turn be used as a benchmark
dose (e.g., LEDg; or LEDy;s for a chemical
mixture) for risk assessment. In the second
case, a chemical mixture (most likely a
more complex one with structurally simi-
lar components such as a hydrocarbon
mixture) may provide quantitative changes
of many biomarkers for a toxicologic
process as well as defined toxicity for a spe-
cific end point. Although the mechanism(s)
of interaction may not be entirely clear,

PBPK/PD or BBDR modeling may be
utilized to estimate the target tissue
dosimetry of this chemical mixture as a
lump (i.e., a pseudosingle chemical) or as
an average chemical based on the average
characteristics of such a mixture. In the
third case a chemical mixture may have
completely different composition includ-
ing metals, aliphatics, and aromatics. The
principles and approaches stated previ-
ously may still apply as long as the like
components are lumped and quantitative
toxicologic information can be obtained
for each of the lumps.

The role of QSAR modeling in the
overall scheme is to provide interpolations
and extrapolations for estimated values for
TRs and PKs for those chemicals that are
not studied experimentally in a class of
chemicals (such as chlorobenzenes) or
chemical mixtures (such as hydrocarbons,
metals, etc.). These gaps may be filled
using QSAR based on structural differ-
ences and the related physicochemical
changes. In doing so we may carry out
PBPK/PD or BBDR modeling on these
chemicals or chemical mixtures on an a
priori basis.

Discussion in this paper consists of past
and ongoing studies as well as theoretical
deliberations. Much of the development is
still at an embryonic stage. We invite criti-
cisms and suggestions for further modifica-
tion and refinement of our approaches.
Through this type of process we will be
able to work toward the goal of establish-
ing a scientifically credible predictive and
alternative toxicology.

REFERENCES AND NOTES

1. Yang RSH. Introduction to the toxicology of chemical mix- 7.
tures. In: Toxicology of Chemical Mixtures: Case Studies,
Mechanisms, and Novel Approaches (Yang RSH, ed). San
Diego, CA:Academic Press, 1994;1-10.

2. Yang RSH, El-Masri HA, Thomas RS, Constan AA. The use of
physiologically based pharmacokinetic/pharmacodynamic
dosimetry models for chemical mixtures. Toxicol Lett 9.

82/83:497-504 (1995) .

3. Yang RSH. Toxicologic interactions of chemical mixtures. In:
Comprehensive Toxicology. Vol 1: General Principles, 10.
Toxicokinetics, and Mechanisms of Toxicity (Bond J, ed).
Oxford, England:Elsevier, 1997;189-203.

4. Weisburger EK. History of the bioassay program of the
National Cancer Institute. Prog Exper Tumor Res 26:187-201

(1983).

5. U.S. NTP. National Toxicology Program, Management Status
Report, National Institute of Environmental Health Sciences.
Research Triangle Park, NC:U.S. National Toxicology

Program, 12 January 1998.

6. Yang RSH. Some current approaches for studyinl% combination 12.
toxicology in chemical mixtures. Food Chem Toxicol

34:1037-1044 (1996).

Environmental Health Perspectives = Vol 106, Supplement 6 = December 1998

Huff ], Haseman J, Rall D. Scientific concept, value, and sig-
nificance of chemical carcinogenesis studies. Annu Rev

Pharmacol Toxicol 31:621-652 (1991).

8. U.S. NTP. National Toxicology Program Fiscal Year 1994

Annual Plan. Research Triangle Park, NC:U.S. National
Toxicology Program, 1994.
U.S. NTP. National Toxicology Program Fiscal Year 1997

Annual Plan. Research Triangle Park, NC:U.S. National

Toxicology Program, 1997.
Yang RSH. Toxicology of chemical mixtures derived from haz-
ardous waste sites or application of pesticides and fertilizers. In:

Toxicology of Chemical Mixtures: Case Studies, Mechanisms,

and Novel Approaches (Yang RSH, ed). San Diego,
CA:Academic Press, 1994;99-117.

11. Andersen ME, Clewell HJ. Pharmacokinetic interaction of

mixtures. In: Proceedings of the Fourteenth Annual
Conference on Environmental Toxicology. AFAMRL-TR-83-
099. Dayton, OH:Wright-Patterson Air Force Base Air Force

Systems Command, 1983;226-238.

Purcell KJ, Cason GH, Gargas ML, Andersen ME, Travis CC.
In vivo metabolic interactions of benzene and toluene. Toxicol

Lett 52:141-152 (1990).

1391



13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.
28.
29.

30.

31.

1392

YANG ET AL.

Sato A, Endoh K, Kaneko T, Johansson G. Effects of con-
sumption of ethanol on the biological monitoring of exposure
to organic solvent vapors: a simulation study with trichloroeth-
ylene. Br J Ind Med 48:548-556 (1990).

Thakore KN, Gargas ML, Andersen ME, Mehendale HM.
PBPK derived metabolic constants, hepatotoxicity, and lethal-
ity of bromodichloromethane in rats pretreated with chlorde-
cone, phenobarbital or Mirex. Toxicol Appl Pharmacol
109:514-528 (1991).

Tardif R, Lapare S, Charest-Tardif G, Brodeur J, Krishnan K.
Physiologica.ﬁ’y-based modeling of the toxicokinetic interaction
between toluene and m—xyfene in the rat. Toxicol Appl
Pharmacol 120:266-273 (1993).

Tardif R, Lapare S, Charest-Tardif G, Brodeur J, Krishnan K.
Physiologically-based modeling of a mixture of toluene and
xylene. Risk Anal 15:335-342 (1995).

Barton HA, Creech JR, Godin CS, Randall GM, Seckel CS.
Chloroethylene mixtures: pharmacokinetic modeling and in
vitro metabolism of vinyl chloride, trichloroethylene, and trans-
1,2-dichloroethylene in rats. Toxicol Appl Pharmacol
130:237-247 (1995).

El-Masri HA, Tessari JD, Yang RSH. Exploration of an inter-
action threshold for the joint toxicity of trichloroethylene and
1,1-dichloroethylene: utilization of a PBPK model. Arch
Toxicol 70:527-539 (1996).

El-Masri HA, Constan AA, Ramsdell HS, Yang RSH.
Physiologically based pharmacodynamic modeling of an inter-
action threshold between trichloroethylene and 1,1-
dichloroethylene in Fischer 344 rats. Toxicol Appl Pharmacol
141:124-132 (1996).

El-Masri HA, Thomas R, Sabados R, Phillips JK, Constan AA,
Benjamin SA, Andersen ME, Mehendale HM, Yang RSH.
Physiologically based pharmacokinetic/pharmacodynamic
modeling of the toxicologic interaction between carbon tetra-
chloride and Kepone. Arcﬁ Toxicol 70:704-713 (1996).
Pelekis M, Krishnan K. Assessing the relevance of rodent data
on chemical interactions for health risk assessment purposes: a
case study with dichloromethane-toluene mixture. Regll}'oxicol
Pharmacol 25:79-86 (1997).

Tardif R, Charest-Tardif G, Brodeur J, Krishnan K.
Physiologically-based pharmacokinetic modeling of a ternary
mixture of alkyl benzenes in rats and humans. gl'oxicol Appl
Pharmacol 144:120-134 (1997).

Verhaar HJM, Morroni JS, Reardon KF, Hays SM, Gaver DP,
Carpenter RL, Yang RSH. A proposed approach to study the
toxicology of complex mixtures of petroleum products: the inte-
grated use of QSAR, lumping analysis, and PBPK/PD model-
ing. Environ Health Perspect 105(Suppl 1):179-195 (1997).
Wei J, Kuo JCW. A lumping analysis in monomolecular reac-
tion systems: analysis of the exactly lumpable system. Ind Eng
Chem Fundam 8:114-123 (1969).

Kuo JCW, Wei J. A lumping analysis in monomolecular reac-
tion systems: analysis of the approximately lumpable system.
Ind Eng Chem Fundam 8:124—-133 (1969).

Quann RJ, Jaff SB. Building useful models of complex reaction
systems in petroleum refining. Chem Eng Sci 51:1615-1635
(1996).

Quann RJ. Modeling the chemistry of complex petroleum mix-
tures. Environ Health Perspect 106(Suppl 6):1441-1448 (1998).
Yang RSH, Campain JA, Gustafson DL, Quann RJ, Klein MT,
Suk WA. Unpublished data.

U.S. EPA. Proposed Guidelines for Carcinogen Risk
Assessment. EPA/600/P-92/003C. Washington:U.S.
Environmental Protection Agency, 1996.

Ito N, Imaida K, Hasegawa R, Tsuda, H. Rapid bioassay meth-
ods for carcinogens and modifiers of hepatocarcinogenesis.
CRC Cirit Rev Toxicol 19:285-415 (1989).

Ito N, Tatematsu M, Hasegawa R, Tsuda H. Medium-term
bioassay system for detection of carcinogens and modifiers of
hepatocarcinogenesis utilizing the GST-P positive liver cell focus
as an endpoint marker. Toxicol Pathol 17:630-641 (1989).

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43,

44.

45.

40.

47.

48.

49.

Roomi MW, Ho RK, Sarma DSR, Farber E. A common
biochemical pattern in preneoplastic hepatocyte nodules gener-
ated in four different models in the rat. Cancer Res
45:564-571 (1985).

Tatematsu M, Mera Y, Ito N, Satoh K, Sato K. Relative merits
of immunohistochemical demonstrations of placental, A, B,
and C forms of glutathione S-transferase and histochemical
demonstration o% gamma-glutamyl transferase as markers of
altered foci during liver carcinogenesis in rats. Carcinogenesis
6:1621-1626 (1985).

Ito N, Hasegawa R, Imaida K, Hirose M, Shirai T, Tamano S,
Hagiwara A. Medium-term rat liver bioassay for rapid detec-
tion of hepatocarcinogenic substances. J Toxicol Pathol
10:1-11 (1997).

Thomas RS, Gustafson DL, Ramsdell HS, El-Masri HA,
Benjamin SA, Yang RSH. Enhanced regional expression of glu-
tathione S-transferase P1-1 with co-localized AP-1 and
CYP1A2 induction in chlorobenzene-induced porphyria.
Toxicol Appl Pharmacol 150:22-31 (1998).

Thomas RS, Gustafson DL, Pott WA, Long ME, Benjamin
SA, Yang RSH. Evidence for hepatocarcinogenic activity of
pentachlorobenzene with intralobular variation in foci inci-
dence. Carcinogenesis (in press).

Thomas RS. The Use of Biologically-Based Models for
Integrating Short-Term Cancer Bioassays, Mechanisms of
Action, and Target Tissue Dosimetry: Application to
Pentachlorobenzene. Ph.D. dissertation. Colorado State
University, Ft. Collins, CO, 1998.

El-Masri HA, Thomas RS, Mumtaz MM, Andersen ME, Yang
RSH. A biologically based mathematical model of the effects of
partial hepatectomy on cell cycle kinetics [Abstract].
Toxicologist 30:131 (1996).

Thomas RS, Chubb LS, Constan AA, Benjamin SA, El-Masri
HA, Yang RSH. A comparison of quantitative, immunohisto-
chemical markers for cell-cycle specific changes in F344 rats
[Abstract]. Toxicologist 30:130 (1996).

Tatematsu M, Aoki T, Kagawa M, Mera, Y, Ito N. Reciprocal
relationship between development of glutathione S-transferase
positive liver foci and proliferation of surrounding hepatocytes
in rats. Carcinogenesis 9:221-225 (1988).

Kerckaert GA, Isofort R], Carr GJ, Aardema M], LeBoeuf RA.
A comprehensive protocol for conducting the Syrian hamster
embryo cell transformation assay at pH 6.70. Mutat Res
356:65-84 (1996).

Isofort R], Kerckaert GA, LeBoeuf RA. Comparison of the
standard and reduced pH Syrian hamster embryo (SHE) cell in
vitro transformation assays in predicting the carcinogenic
potential of chemicals. Mutat Res 356:65-84 (1996).

Dlugosz AA, Glick AB, Tennenbaum T, Weinberg WC, Yuspa
SH. Isolation and utilization of epidermal keratinocytes fgr
oncogene research. Methods Enzymol 254:3-21 (1995).
Boukamp P, Petrusevska RT, Breitkreutz D, Hornung J,
Markham A, Fusenig NE. Normal keratinization in a sponta-
neously immortalizec% aneuploid human keratinocyte cell line. ]
Cell Biol 106:761-771 (1988).

Rhim JS, Jay G, Arnstein P, Price, FM, Sanford KK, Aaronson
SA. Neoplastic transformation of human epidermal ker-
atinocytes by Ad12/SV40 and Kirsten sarcoma viruses. Science
227:1250-1252 (1985).

Baden HP, Kubilus J, Kvedar JC, Steinberg ML, Wolman, SR.
Isolation and characterization of a spontaneously arising long-
lived line of human keratinocytes (NM-1). In Vitro Cell
Develop Biol 23:205-213 (1987).

Leo D, Weininger D. MedChem Software Manual v 3.54,
Update 1995. Software. Irvine, CA:DayLight Chemical
Information Systems, 1989.

Hermens JLM. Quantitative structure-activity relationships of
environmental pollutants. In: Handbook of Environmental
Chemistry (Hutzinger O, ed). Vol 2E. Berlin:Springer Verlag,
1989;111-162.

Hansch C, Hoekman D, Leo A, Zhang L, Li P. The expanding

Environmental Health Perspectives = Vol 106, Supplement 6 = December 1998



50.

51.

52.
53.

54.

55.

56.

DEVELOPING ALTERNATIVE AND PREDICTIVE TOXICOLOGY

role of quantitative structure-activity relationships (QSAR) in
toxicology. Toxicol Lett 79:45-53 (1995).

Wold S, Albano C, Dunn WJ III, Esbensen K, Hellberg S,
Johansson E, Sjéstrom M. Pattern recognition: finding and using
regularities in multivariate data. In: Food Research and Data
Analysis (Martens H, Russwurm H Jr, eds). London:Applied
Science, 1983;147-188.

Dunn WJ III, Wold S. Pattern recognition techniques in drug
design. In: Quantitative Drug Design (Sammes PG, Taylor ]B,
eds). Comprehensive Medicinal CEemistry Vol 4 (Hansch C,
ser ed). Oxford:Pergamon Press, 1990;691-714.

Hansch C. Structure-activity relationships of chemical mutagens
and carcinogens. Sci Total Environ 109/110:17-29 (1991).
Debnath AK, Debnath G, Shusterman AJ, Hansch C. A QSAR
investigation of the role of hydrophobicity in regulating muta-
genicity in the Ames test. 1: Mutagenicity of aromatic and het-
eroaromatic amines in Salmonella typhimurium TA98 and
TA100. Environ Mol Mutagen 19:37-52 (1992).

Debnath AK, Hansch C. Structure-activity relationship of
genotoxic polycyclic aromatic nitro compounds: further evi-
dence for the importance of hydrophobicity and molecular
orbital energies in genetic toxicity. Environ Mol Mutagen
20:140-144 (1992).

Schiitirmann G. QSAR Analysis of the acute fish toxicity of
organic phosphorothionates using theoretically derived molecu-
lar descriptors. Environ Toxicol Chem 9:417—428 (1990).
Schiiiirmann G. Quantitative structure-property relationships
for the polarizability, solvatochromic parameters and
lipophilicity. Quant Struct Act Relat 9:326-333 (1990).

Environmental Health Perspectives = Vol 106, Supplement 6 = December 1998

57.

58.

59.

60.

61.
62.

63.

64.

65.

Purdy R. The utility of computed superdelocalizability for pre-
dicting the LCsq values of epoxides to guppies. Sci Total
Environ 109/110:553-556 (1991).

Verhaar HJM, Rorije E, Borkent H, Seinen W, Hermens JLM.
Modelling the nuc{eophilic reactivity of small organochlorine
electrophiles: a mechanistically based quantitative structure-
activity relationship. Environ Toxicol Chem 15:1011-1018
(1996).

Sekusak S, Giisten H, Sabljic A. An ab-initio study on reactiv-
ity of fluoroethane with hydroxyl radical: application of G, the-
ory. ] Phys Chem 110:6212-6224 (1996).

Sabljic A, Protic M. Molecular connectivity: a novel method
for prediction of bioconcentration factor of hazardous chemi-
cals. Chem Biol Interact 42:301-310 (1982).

Sabljic A. Chemical topology and ecotoxicology. Sci Total
Environ 109/110:197-220 ( 1993).

Basak SC, Bertelsen S, Grunwald GD. Use of graph theoretic
parameters in risk assessment of chemicals. Toxicol Lett
79:239-250 (1995).

Basak SC, Grunwald GD. Molecular similarity and estimation
of molecular properties. ] Chem Inf Comp Sci 35:366-372
(1995).

Basak SC, Grunwald GD. Predicting mutagenicity of chemi-
cals using topological and quantum chemical parameters: a sim-
ilarity based study. Chemosphere 31:2529-2546 (1995).

De Jongh ], Verhaar HJM, Hermans JLM. A quantitative struc-
ture-activity relationship approach to estimate iz vitro tissue-
blood partition coefficients of organic chemicals in rats and
humans. Arch Toxicol 72:17-25 (1997).

1393



